Lithological and Hydrothermal Alteration Mapping of Epithermal, Porphyry and Tourmaline Breccia Districts in the Argentine Andes Using ASTER Imagery
نویسندگان
چکیده
The area of interest is located on the eastern flank of the Andean Cordillera, San Juan province, Argentina. The 3600 km2 area is characterized by Siluro-Devonian to Neogene sedimentary and igneous rocks and unconsolidated Quaternary sediments. Epithermal, porphyry-related, and magmatic-hydrothermal breccia-hosted ore deposits, common in this part of the Frontal Cordillera, are associated with various types of hydrothermal alteration assemblages. Kaolinite – alunite-rich argillic, quartz – illite-rich phyllic, epidote – chlorite – calcite-rich propylitic and silicic are the most common hydrothermal alteration assemblages in the study area. VNIR, SWIR and TIR ASTER data were used to characterize geological features on a portion of the Frontal Cordillera. Red-green-blue band combinations, band ratios, logical operations, mineral indices and principal component analysis were applied to successfully identify rock types and hydrothermal alteration zones in the study area. These techniques were used to enhance geological features to contrast different lithologies and zones with high concentrations of argillic, phyllic, propylitic alteration mineral assemblages and silicic altered rocks. Alteration minerals detected with portable short-wave infrared spectrometry in hand specimens confirmed the capability of ASTER to identify hydrothermal alteration assemblages. The results from field control areas confirmed the presence of those minerals in the areas classified by ASTER processing techniques and allowed mapping the same mineralogy where pixels had similar information. The current study proved ASTER processing techniques to be valuable mapping tools for geological reconnaissance of a large area of the Argentinean Frontal Cordillera, providing preliminary lithologic and hydrothermal alteration maps that are accurate as well as cost and time effective.
منابع مشابه
زمینشناسی، دگرسانی، کانیسازی و ژئوشیمی محدودهی خونیک، جنوب بیرجند
Khunik area is located in eastern Iran, about 106 km south of Birjand. Preliminary prospecting in the area, using ASTER mineral mapping (SAM) for locating possible alteration zone in the area provided satisfactory results when checked with field observation. The area comprises outcrops of Paleocene to Eocene volcanics, which was intruded telescopically by several subvolcanic intermediate bodies...
متن کاملApplication of advanced spaceborne thermal emission and reflection radiometer (ASTER) data in geological mapping
The spectral and spatial properties of the advanced spaceborne thermal emission and reflection radiometer (ASTER) data can be used in detailed lithological and hydrothermal alteration mapping related to copper and gold mineralization, particularly the shortwave infrared radiation subsystem where hydrothermal alteration minerals have diagnostic spectral absorption features. This paper reviews th...
متن کاملApplication of Mixture Tuned Matched Filtering on ASTER Data for Hydrothermal Alteration Mapping Related to Porphyry Cu Deposits in Jabal-Barez Ranges, Kerman Copper Belt, Iran
The study area is located in Jabal-Barez Ranges, southeastern part of Kerman Copper Belt (KCB), where the porphyry copper mineralization such as Kerver occurs. This article deals with the enhancement of hydrothermal alteration minerals for exploration of porphyry Cu mineralization, and differentiates intense hydrothermal alteration zones from those with low intensity. Shortwave Infrared (SWIR) ...
متن کاملApplication of Spectral Analysis in Mapping Hydrothermal Alteration of the Northwestern Part of the Kerman Cenozoic Magmatic Arc, Iran
The northwestern part of the Kerman Cenozoic magmatic arc (KCMA) contains many areas with porphyry copper mineralization. In this research, we used the advanced space-borne thermal emission and reflection radiometer (ASTER) and Enhanced Thematic Mapper plus (ETM+) images of this region to map the distribution of hydrothermally altered rocks, based on their mineral assemblages. The spectral meas...
متن کاملASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration
This paper provides a review of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Advanced Land Imager (ALI), and Hyperion data and applications of the data as a tool for ore minerals exploration, lithological and structural mapping. Spectral information extraction from ASTER, ALI, and Hyperion data has great ability to assist geologists in all disciplines to map the d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 10 شماره
صفحات -
تاریخ انتشار 2018